

|
|
|

je : See ne : |
iE i ett i noe a . oe . : . oo
: : : a : Sees ee see : cee See SoS EaRE

nesses Sota ar aE

Next Week APPLICATION

@ The Torch disk pack turns TRAVELLING LIGHT We review the. He cacao etic
new generation of portable micros 34) computer with twin disk

drives, a Z80 microprocessor
(with 64K of RAM) and a full

HARDWARE = set of business software. Yet
. — it costs little more than the

FIRST IMPRESSIONS Dot matrix ___ | Acorn disk drive.
printers can create attractive graphics 344 © We look at how computer

ADVANCED STUDIES The Advance 86a Goute cod coaskies the
is a home micro with expansion potential 34 strategies of some well-
: = ieee 3 known manufacturers.

: _ | -* | @Oneofthefewfeatures |
i ————E—E——E——ee———— i ee missing from the BBC Micro is
THE NUCLEAR FAMILY We look at a sprites. We list a machine

strategy game that puts your family at the 356) _| cade proaram that enables a
: pseudo-sprite to be used from
controls of a nuclear war BASIC.

FROM CONTROL CHARACTER TO
CPU A weekly glossary of terms — 348

PROGRAMMING PROJECTS

JOINING FORCES We network two
Spectrums to compete in a game of
Battleships

LANDING CRAFT Our simple program |
will provide a intriguing game goZ

STYLE COUNSEL Continuing our series
of programming tips we look at the 354
importance of good program
documentation 7

MACHINE CODE

DIRECTING THE ACTION We learn
how to manipulate Spectrum sprites

RADIO CONTACT Motorola are a giant
electronic components manufacturer 360 COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH

Editor Jim Lennox: Art Director David Whelan, Technical Editor Grian Morris; Production Editor Catherine Cardwell: Picture Editor Claudia Zeff: Chief Sub Editor Robert Pickering. Designer Julian Dorr: Art Assistant Liz Dixon: Editorial
Assistant Stephen Malone, Sub Editor Steve Mann, Contributors [ed Ball, Vax Phillips, Matt Nicholson, Geoff Nairn, Graham Storrs, Richard Pawson, lan White, Group Art Director Perry Neville. Managing Director Stephen
England, Published by Orbis Publishing Ltd: Editorial Director Brian Innes, Project Development Peter Brookesmith: Executive Editor Chris Cooper, Production Controller Peter [ayior-Vedhurst: Circulation Director David
Breed, Marketing Director Michael Joyce, Designed and produced by Bunch Partworks Ltd; Editorial Office 85 Charlotte Street, London W1P {LB; © APSIF Copenhagen 1984; © Orbis Publishing Ltd 1984: Typeset by Universe; Reproduction by
Mullis Morgan Ltd; Printed in Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER ADVANCED COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER ADVANCED COURSE — Copies are obtainable by placing a regular order at your newsagent, or by taking outa subscription. Subscription rates: for six months (26 issues) £23.80: for one year (52
issues) £47.60. Send your order and remittance to Punch Subscription Services, Walling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back Numbers UK and Eire - Gack numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4B] at cover price.
AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE &
MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax. :
How to obtain binders for HOME COMPUTER ADVANCED COURSE — UK and Eire. Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 5, 6 and 7, EUROPE: Write with remittance of £5.00 per

_ binder (incl. p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4B]. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER ADVANCED
COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Lid, 23
Chandos Street, St. Leonards, NSW 2065. [he binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER ADVANCED COURSE BINDERS, Gordon &
ae (NZ) Ltd, PO Box 1595, Wellington. SOUTH AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS. Intermag, PO Box 5/394,
pringtield 2137.

_ Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
_ Circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily De identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or

local taxes, which are not included in the above prices unless stated.

When Adam Osborne launched the first
portable microcomputer in 1981, it was
greeted with great enthusiasm. But such has
been the advance of technology that the
Osborne and the many portables it inspired
now appear cumbersome and heavy when
compared to the latest generation of truly
portable computers. _

of ‘portable’ h
since the new generation of ‘hand-held’
computers. Indeed, the portable micros
introduced only a few years ago are now referred
to as ‘transportable’. True portability is now
offered by computers that carry their own power
supply, display, and storage devices in a package
no larger than a telephone directory.

The Epson HX-20 was the first to offer this type
of portability, but now its tiny 20-character by
four-line liquid crystal display shows the machine's
age. The latest portables such as the Tandy 100,
NEC PC-8201A, and Olivetti M10 are similarly

priced but can display four times as many
characters on their screens. |

So what can these computers do? What are
their advantages and disadvantages over
conventional desk-top micros? The most obvious
reason to buy a portable is to have access to full
computing power anywhere and at any time.
Many people spend much of their time away from
their desk computer, and many unproductive
hours are spent in other offices, hotel rooms,
airports and trains. The portable — or hand-held
— computer enables this time to be put to use.

The latest generation of portables give
convenient personal computing power for science
and engineering work, accounting, financial
management and word processing — in fact for
practically any application that conventional
personal computers are used for.

Hand-held computers usually carry at least
three built-in programs. These are a BASIC
interpreter, a word processing program, and
communications software. The Tandy 100 and the
Olivetti are also equipped with built-in address
and scheduling programs to allow the user to find
addresses, telephone numbers and daily
appointments.

The communications program is extremely
important as: it enables the portable to
communicate with other micros and databases
over the telephone network. This facility can also
turn the portable micro into:a telex terminal or
receiver and transmitter of electronic mail. Of
course, a modem or acoustic coupler has to be

used to achieve this. In this way, an executive away
from his desk can keep in touch with his head
office. A journalist on location can write his story
into his portable computer and transmit it
immediately to the computer back at the
newspaper. :

The more expensive portable computers such
as the Sharp PC-5000 and Epson PX-8 use the
MS-DOS and CP/M operating systems common
to their desk-top equivalents. They are therefore ©
able to run a vast range of business software.

The Epson PX-8 comes with the popular
Wordstar word processing program already
installed in its ROM chips. The Sharp uses bubble
memory plug-in cartridges that provide 128
Kbytes of extra storage each. These cartridges
handle data at a much faster rate than disk drives.

On The Move
Computing on the move is
becoming increasingly popular,
mainly with businessmen.
Some are using the new
generation of ‘hand-held’
computers to snatch a few

TONY SLEEP

extra minutes word processing
as they hop from taxi to train to
plane. Others, such as
salesmen, are breaking new
ground by taking computers to
their customers to generate on-
the-spot estimates that
otherwise would have taken
days to prepare.

- Executives on the move can
relay data back to head office
using a modem and ordinary
telephone lines, or at the end of
the day return to the office and

send the data directly to a
larger computer

THE HOME COMPUTER ADVANCED COURSE 341

thtarseAsrrmaen
NOK arenas

€ rere eran i Sha Con

|

SIMON DAYTON

io

ul

i
g

nae ‘a

 = |

poorer a4 ATi i

Ht

(i
fi

Screen Print
These designs were drawn on-
screen using a graphics tablet.
The screen contents were then
dumped to an Epson FX-80
printer, showing the graphic
possibilities of the dot matrix
printer

ie J ea a We gu ly a : =

r iE,
itil

cl sat
“HE lie capabilitie

because users don’t know they exist. In this
article we show how to set up a printer to
produce attractive graphics, and how to
construct a screen dump program that will
do the work for you.

“Most home computers have. a low rexolution
graphics mode in which pictures are built up from
graphics characters, each the same size as a
conventional text character. These

whereas PRINT CHRS(128) displays a graphic
character — a black rectangle if you are using a
Dragon micro.

To print the letter ‘Z’ on a printer, we ould
type LPRINT CHRS(90), so you might think that
LPRINT CHRS(128) would similarly print a black
rectangle on paper. Unfortunately this is not the
case. This is because the characters above code
127 vary enormously between different makes of
micro, and obviously printer manufacturers
cannot produce a special printer for each

_ computer on the market. What they tend to do is
either copy the standard ASCII set into the codes

344 THE HOME COMPUTER ADVANCED COURSE.

printers often tend to be overlooked, simply

‘block’.
characters have character codes greater than 127,-
as the numbers 0 to 127 are reserved for the ASCII |
character set. So PRINT CHRS(90) would print an
ASCII character on the screen — ‘Z’ in this case —.

128 to 255, or alternatively program in their own
graphics characters.

The Epson range of printers does not come with
any graphics characters. Instead you can change
any of the standard ASCII characters to produce
your own graphics characters. This is achieved by —
sending suitable ‘escape codes’ to the printer (see
pages 324 and 325).

High resolution computer graphics are
constructed from small dots, or pixels, rather than
from whole characters. In a similar way, high
resolution printing uses small dots of ink. The
print head in a dot matrix printer has a number of
pins arranged in a vertical line that moves across
the paper as it prints. Usually, characters are made
up from a grid of dots (perhaps eight by eight
dots). It is possible, however, to produce graphics

i by controlling the pins individually.
The first step is to switch your printer into its

graphics mode. As with any other printing
exercise, this is done by sending an escape code
that is specific to the type of printer being used. On

the Epson FX-80 for example, the necessary
instructions are: — |

LPRINT CHRS (27); “K”;CHRS (N1);(N2);

The letter “K” indicates graphics mode and the
numbers (N1) and (N 2) set the width of each line of
graphics — in other words the number of dots that
will fit across the page.
When in standard graphics mode, the FX-80

can print a maximum of 480 dots in one line.
Other modes allow resolutions in the range of 576
to 1920 dots per line. If we wish to use the full
width, therefore, 480 will be the required line
length. ‘Two numbers are required in our code to
set the width, because the maximum size of each’
number is 255. The second number (N2) is
therefore multiplied by 256 and added to the first,
(N1). So for 480, the numbers are 1 and 224.
(480=256X1+224). Therefore, on the Epson
FX-80 printer we need the following instruction: -

LPRINT CHRS (27); “K”:CHRS (224):CHRS (1):
Having programmed the printer with the sraphics |
line length we need to send the graphics data.
Even though there are nine pins in the print head.
of an Epson FX-80, only the top eight can be used

in most graphics modes. Starting from the bottom
pin we number them 1,2,4,8,16,32,64 and 128.
The data for all eight pins can then be represented
by a single number, between 0 and 255, and this is
sent to the printer using LPRINT CHRS(X), where X is
the number. So if we wanted only the bottom pin
to ‘fire’ we would send CHRS(1) to the printer; to
trigger the top pin alone we would send CHRS$ (128).
For a combination of pins we simply add up the

ot

$4

Pin Point
The pattern was produced on
a dot matrix printer by
sending alternate pairs of the
decimal numbers 195 and 60
to the print head. The chart
(below) shows how these
numbers in binary are
interpreted by the print head
pins, (illustrated on the
right). Controlled paper feed
causes the next line to
overprint the gap left by Pin 1

e PIN FIRES
o PIN DOES NOT FIRE

numbers of each pin. This process is then repeated
for each of the 480 s across the page.

In the illustration there are two pin patterns:
CHRS(195) and CHRS(60). So to print the first four

columns of the line pattern we type:

LPRINT CHRS(195);CHRS(195);CHRS (60);
CHRS (60);

After four columns the pattern repeats, so a
FOR...NEXT loop takes care of the rest of the line.

It is important to realise that CHRS(60) in the
example does not instruct the printer to print the
ASCII character with code 60 — it is a way of
representing the data for the pins in the print head.
The printer recognises it as such because we have
previously transmitted the CHRS(27);“K” sequence
to turn on the graphics mode.

This method of printing, known as bit image |
printing, is described for an Epson FX-80 printer;
other printers use a similar method, but the exact
details will vary. Producing graphics in this way is
quite laborious, and only really suitable for
patterns. A much better way of printing graphics is
by means of a screen dump. This is a program that
copies what is displayed on the monitor screen
onto the paper. |
By scanning across and down the screen

display, the program tests to see if the pixel is on at
each position. Ifit is, then we want a pin in the print
head to fire at the corresponding position on the
paper. The scanning is done by using the
POINT (x,y) function, or similar commands that are
available on most micros; if a pixel is lit then the
function POINT(x,y)- will be 1; if it is unlit, the
function is 0. The different screen resolutions of
different micros mean that some adjustment might
be necessary.
_ One problem that might have occurred to you
is: how does a screen dump program handle
colour displays? The usual solution is to use
different dot patterns for each colour. A screen
pixel that is black might be printed using four dots
in the form of a square; one that is red might be

i tf

afata'ae nh Wes

HERS
see ee a

us

Hennaee Eee RR! # EUR EEE ED

att tf

aa 8 if af i Fatt Reta # # SU, ae. ee, SS. SE ke eS BE.

Hee Re ne

as i

#5

Ce) ee: | SS 9

ait

HEB H EE BS ‘fern ae : i i

represented by a two dots; and one that is white
would not use any dots. The POINT(x,y) function

ete rit we Hat ae
#8

HR GEE RH

a Re i |

eke
‘ #

i Hy

qe ee ee ae

} i i &
mM

af 8

¥ se
i ¥

ef 4
ida gall a if fi

GHHRAH EHR HRB EE ET

i a
He i i u i ii

ui
ay Rae

sntuteatae '

airy
t

sitet
ERY

A Hf

Hf ef HE a Me a HY WE EE if
uf,

fe ut
Sree ehe He 8 JOO. sere ne ie:

#5 8

t

HE HS 2
sollte, fH a He HEE RRRN REE EE ee

ieee ene neha eee RR HURUHE EERE RRR SRE ee
HHRGEHR EERE PRE be
on eta pa eee HERR E RE HAE E fein age. aia la ae Rue aie TRHHPRRHEES

33 # i ne #8 fi id il | A id i i i 8 # i a a i i i a
a:

produces a different number dependng onthe
colour of the pixel, and so can still be used. ©

Screen dump programs are usually added to the
end of the program producing the picture, in the
form of subroutines. To ‘dump’ the picture to the
printer you might press the key ‘P’, and the
program would then jump to the subroutine. A
screen dump program written in BAsic tends to be
quite slow, taking perhaps five minutes to print out
a small picture. Machine code versions are slightly
quicker. |

As you can see, the graphics capabilities of dot
matrix printers are reasonably advanced — if a
little cumbersome to use. Once mastered
however, the printed page can be as attractive as
the screen display.

Woes

Pe a ae

Splash Of Colour

This picture of the Spectrum
‘keyboard was produced on a
colour ink-jet printer — in
effect this is a dot matrix
printer in which the pins are
replaced by ink jets

RRR MRR MEENA HANH OH RRMER EEE RH EN OHM AMER HERE R RR HR
MRM RRAEMRR NR NAHRROR RMR RRRRRHRE NOH AHR RRR RRR NHR RR

PIERSON faicetery Slane, Heine Scheel Wines: Eoin, Linen, Unigene aM bat ce ean ae Par ae nr ran Me eee are Er aera ee rn a i ee a ee a Ae ee ee ee ee eee ee ee
SPARE RHEE RERCRE RAR MEA TA AER NER DEON AO EAN OHO ER TREN EOWA OREO RRR AER eee we

Snr ry rr rr ree ee ee ee ee ee ila oCRTe REPRE CECE R OEE ee ee . “ * ne an wae ” . «

THE HOME COMPUTER ADVANCED COURSE 345

STEVE CROSS

SCREEN DUMP BY DIMENSION GRAPHICS

GRAPHICS BY IAN McKINNELL

. Fleet Action
Each player’s fleet comprises
ships of different sizes (from
motor torpedo boat to carrier)
placed anywhere in the grid.
The screen displays the

_ position and status of one
player’s ships and the enemy's
shots at them, and the position
and effect of his shots at the
enemy’s ships: “X” shows a hit,
“O” for a miss

JOINING FORCES
We introduced the principles of networking
on micros on page 321. Now we look at a
game application for the cheapest network
of all — the Sinclair ZX Net. This system is
the simplest possible but its potential for
both serious and amusing use should not
be overlooked. |

Hatlehips is a classic pen and paper game. Each .
_ player has two grids, which he keeps hidden from
his opponent. On one he marks his own ships, on
the other he marks his progress as he ‘fires at’ —
that is, tries to guess the position of = his
Opponent’s ships.

The program we have developed vie on two
Sinclair Spectrums linked together with a
network. Both Spectrums must be equipped with
Interface 1. Each player sits at his own screen and
the two computers send each other messages that
report where the players are shooting and what the
results are.

The first hazard you meet is that of identifying
the players. In order to communicate, each
Spectrum has a different network station number.
The two Spectrums start off with identical
programs but somehow must end up with different
station numbers. This is handled automatically by
a routine at line 2000. When the program is RUN,
both machines will claim to be station 1 on the
public ‘broadcast’ channel.

Whichever machine is RUN first will become
station 1 and the other machine will then make
itself station 2. This system works well for
Battleships. The program then assumes that
whoever is station 1 is player 1 and therefore
allows him to shoot first. However, if the two
programs are started within a fraction of a second
of each other, the two messages “I’m station number

346 THE HOME COMPUTER ADVANCED COURSE

1” simply collide and the ZX Net system will stop
functioning until the players press the BREAK key.

Once you know who’s who, it is easy for the
program to communicate with its opposite
number across the network. While one player is
picking a target square on his machine, the other is
waiting to receive his choice. The machines will
then swap over. One machine calculates the results
of the shot and sends back a message while the
other waits to receive the results and East its
screen display accordingly.

Provided you make sure that the two programs
always ‘fit? together —- one sending, the other
receiving — this is very easy to program. You don’t
have to worry about timing, sending messages too
late, or missing them after they've been sent
because ZX Net stops until both stations are ready
and then transmits the data. So it doesn’t matter if
one player takes a long time to select a target or if
the program takes a long time to update its screen.

Another point worth noting is that the amount
of data being transmitted should be kept to a
minimum. There’s no need to send long chunks of
data. Provided both programs know what the
information means, you can communicate using
short codes. In Battleships, the program returns
the result of a shot as a two character string. The
first character is a code:

1 Miss
2 Hit a ship
3 Hit and sunk a ship
4 Hit and sunk a ship and won the game

The second character is the class of ship that was
hit (or a 0 for a miss). The program at the other end
can decode this information and _ display
appropriate messages. This method makes the
time taken to execute each turn so fast you
wouldn't think that another computer was
involved at all.

404 RTH

f.

LIZ HEANEY

Playing The Game
This program requires a slightly complex starting
procedure because It runs separately on two
spectrums. A copy of the program must be loaded
into each computer.

Both may be loaded from cassettes. but it is
much quicker to load one Spectrum from cassette
(or Microdrive) and then transmit the program
across the network to the other machine.

To do this, type LOAD «“n’;0 at the receiving end
and SAVE «“n’;0 on the machine that has the
program in memory. Next, the players should
decide who Is to shoot first. This player should
RUN the program slightly before the second player.
The program then assigns network numbers to
both machines and works out which copy of the
program is playing first and which second. ~

Networked Baktleships Game 1G
ua

le REM 2 Spectrums, Interface 1s

12 REM June @4/Version 1.6

1S REM €** imit everything

30 GO SUB Bono: REM fiance for nee

40 LET ste! ae

(EM 24 spaces

SO DIM $(8)s REM ship types

SO DIM oe(B 12k REM ahi fremes

79 DIM a(19,10)5 REM squared paper !

OO POR tel TO Bt READ Soy ve ee Nee

PO OAIA 1, MIB Le Creer 8 Cri eer |

100 DATA 3, "Battleship’,3, "Hattleship",4, "Destro

yer. ao, Carrier!
L1O LET scm@

120 GO SUB 2000: REM init sereen

130 GO SUB 4000: REM set up ships

L40 REM now jump depending which

150 REM player we are. #1 shoots firgt

1o0 Je stare THEM GO 10 40
200 REM X¥*X Take a shot!

elO LET m@="Your shot’: GO SUB 6000

220 60 SUA YOO! Je eel THEM GO [BEG
eo OPEN #43 "n"shim

240 FRINT #43 at

ev CLOSE: #4

200 REM wait & get results back

=/0 OPEN Hoe my sim

£80 INFUT #4: a%

290 CLOSE #4

OOO Let pavAl Aaetl 10 1))k LET eR Came TOD)
S00) Je pel TEN el mee ee PRIN A ee

Pye ee BO Ue OO

ae LP vel PAE Ce eee PRM ee Lae
Dt Ree i SR eo

S50 [FF eee THEN LET m$="You've sunk an enemy "+

Wwe tes 0 BUR BOO
oA IF p24 THEN LET m@=' Congratulations Yo

WowWee OU GOO. Be ;

400 REM £#¥* Enemy fire

410 LET m@="Enemy firing’: GO SUB 4uo00

420 OQOFEN #4: "m"shim

430 INFUT #45 at

440 CLOSE #4

450 LET psVAlL (aie TO d+: LET geCODE (at)-64

O00 Le) Mee Enemy Fiping et tabe GO ole Gao

Ay) Let Beato. ae LE Bi cee

AGO [he ee TAM ee Pe Ge ee

49g

bai

ao
Bey

~m ait

os

Hj fe do 1

3 ARSE et ee ee ee eee

{Fr ee THERM LET rset

Oe oe eee | ee ae ee ce)

S40 OREM #435 "no" shim

aot PRINT #43 at

SOO CLOSE #4

oO Le re teen Oe mae ee a in eee RN Ad

Gta, Abas 8

ool IF tel Ve Le) mbes damaged’: TRIN:

A ee Ae

Cee ee a

SR a AUR eS CY

we fF tet TA Le) ee oor yy 2. eo Gees GG
DSR SO Se

GON Tl

O REM £#* decide who's who

CLOSE HA

OREM Has Uris oO

FRUIT fas

CLOSE #4

CPE Hebe Myla O

CMR UT feels ae

CLOSE #4

a Po abe 1 re AP ee ee

PRUN tebe ee Le ee ae |

z ce aN YO

i

Ley meee eb! sme suink!

PAUSE Ss

NETWORKING/PROGRAMMING PROJECTS

When the program begins, both players must set
up the positions of their ships. This is done by _
specifying the location of one end of each craft on
the 10 x 10 playing grid and saying whether the rest
of the ship is up, down, left or right of that position.
This sounds complicated but is convenientin |
practice. Each player has two MITBs (length 1
Square), two Cruisers, (length 2 squares), two
Battleships (length 3), a Destroyer (4) and an

Aircraft Carrier (5).
The players then take turns to shoot at a square

on each other's grid, and the program evaluates the
result of each shot. A win is achieved by destroying
all of one player’s ships. Both players should type
RUN to play again, remembering that whoever
wants to start should RUN first

eO/O Ie abe’ THEN Lel stase

ey HS ;

BOG VORP! nv setar LET Aime seater RETURN

ict REM #4* set up screen

Cr ee te THEN LET cols? :

eG a BORDER Yecol: FARPER Yecols INE col

PRON A Ge BN ee
PIM) § FIA) URLAYER #£’ssta

PORE ee WIE: Srl TARGET SHIP

Ceo OM O12 S456 789 OLE SAG / B89 ©

ON eee

OB eC PRU CLG) so.

en ee ea

Ue
Si00 RETURN

4000 REM EF Set up ships

4010 LET m$="Flease position your ships": GO SUB

HOOO

4020 FOR s=l 10 ee
AQ (Lil Meath get. ob S (ede Leng (Fe 6S oe

Ve SU Ge)

Ao) GU SUR 7s Ie eel THEN =O 10 AO

Ay LP eee Te LE eee LE) vdee Gb PO Ad
TO)

AO oe ee

"> CHR

ies: LEl fess LET yd

4080 [PF ate" OR abe’ THEM LET xed=O: LET yd=
ae oe

AOPO TF ate Dp" OR ateve’ THEM LET xwd=O: LET yd=
i

SOO Oe eee | Oe eee PE ey
Psd

4110 [PF ater"
vm)

4120 IF xdeS AND ydes THEN GO TO 4070

io AD lee oes LE eee Le ea 2
AA eee ee Re ee Ae oe

Mave the ship away from the edge’: GO SUB 6000: GO

TO 4030

4130 IF ate, yieeO THEM LET m@="Please reposition

the ship": 60 SUB $000: GO TO 4030

4160 LET xexted: LET yeytyd

OU Ae) Lele de te tO THe 6G yO Aa

Algo LET leece)s LET x=p:e LET yeq

Aloo LET ate,ylesoa INE ete)e FRINT AT Sty, 4te 3”

PS ey

Vom Ue Bee LE ye eye

Dey Lele le te Pee = Gy Te ae

Ae) Me

wd=-is LET ya

OM ater) ap Let edeis Let yde

<} 2

42a RE TURN

6000 REM EX Print ms

Ot ITM Al BO eee Al BO edt POE boos RE EL)

Ftp

7OOO REP EX Validate cao-ords

YOLO LET eo

TAT | Ce ee ee

Ve ee Ae ee IER el ee te Pt a

Pub 2a le

COO Oe eee a ee ee AR eee ee

Vie eae TO eee Ce)

ett PAR

;
"
}

y

faetl 10 ty); LE] peUODE (apie 10.

te deo OF oye TEM Cel wear LET geo: Ley

Lope eo OR ee PE Le) ee]

Le De eo Oe ey THEN Le eT

IF @=1 THEN LET m#="Fleace re enter CO orci

50) SUR SO. Be TUN

7110 LET geq-6%: LET p=p-47
7120 RETURN

THE HOME COMPUTER ADVANCED COURSE 347

CPU
A typical micro CPU showing
pin-connectors for the buses.
The other shapes represent the
ALU, registers, program
counter, stack pointer, and
control block

KEVIN JONES

CONTROL CHARACTER
Control characters are ASCII codes that are used
to indicate to the computer that a_ specific
operation must be carried out. These codes fall
outside the range used for normal text, numbers
and punctuation, and are often not printable.
Many control characters are universally
recognised — ASCII 13 is always used to indicate a
Carriage Return — while others are used for
different purposes on different machines. The
Oric and Atmos computers, for example, use
control characters for double-height printing, for
disabling the screen and for changing the
displayed colours. Word processing packages use
control characters for formatting text output by
sending instructions to the printer.

COURSEWARE
You may be getting a little wary of the seemingly
endless series of ‘ware’ words. The terms hardware

_and software are by now universally recognised;
firmware denotes system software that is held in
ROM; courseware is used in educational circles in
connection with computer aided instruction (see
page 235). It refers to the range of educational
software that is available for a particular machine.
A microcomputer’s courseware may consist of a
selection of independent programs from different
sources that cover separate topics and that have
nothing in common. The term ts also applied to

_ programs from the same source that use the same
command structure but cover different subjects in
the curriculum. Sometimes the word is used to
refer to a single program, with demonstration and
questions held in separate data files. |

CP/M
Like Hoover, Biro or Thermos, CP/M is a
proprietary product name that has found its way

348 THE HOME COMPUTER ADVANCED COURSE

into common usage as a generic term and is often
used as a description of a business computer. CP/
M is, in fact, an operating system that was written
by Gary Kildall of Digital Research for 8080- and
Z80-based machines. CP/M stands for Control
Program/Monitor (or Control Program for
Microprocessors), and was the first operating
system to be adopted by a large number of
computer manufacturers, enabling software
writers to develop programs that would run on
many different machines.

Its wide acceptance was due to the fact that it
was the first in the field, and in many respects
CP/M is a far from ideal system, containing
several hang-overs from the crude microcomputer
system for which it was written. CP/M file-_
editing, for example, is based on a facility for
editing reels of punched paper tape. Numerous
versions of CP/M have been released. These
include Concurrent CP/M, which allows several
different programs to be run simultaneously, and
Personal CP/M, which is stored i in ROM instead
of on disk.

CPU
The CPU, or central processing unit, is the part of
the computer that does all the important work. All
computers, irrespective of size, have a CPU. The
CPU on a microcomputer, however, is contained
in a single silicon chip, otherwise known as a
microprocessor.

The task of the CPU is to receive program
instructions in machine code and carry them out.
These instructions may be used to move numbers
around in memory or to perform simple
arithmetic. All instructions and numbers are in the
binary number system.

Each CPU is made up of many thousands of
components, although some CPUs are more
complex than others. One measure of the
complexity of a CPU is the size of numbers that it
can handle, measured in binary digits (bits). Many.

calculators use four-bit CPUs, home micros
generally use eight-bit CPUs, some business
micros use 16-bit CPUs, and mini and mainframe
computers often use 32 or 64-bit CPUs.

Some microprocessor CPUs combine more
functions on one chip than others. Many have
built-in clocks to produce the vital timing signals,
others need a separate clock chip. A number of
CPUs include small amounts of memory, while
others have all their main memory outside the
CPU. The CPU handles all the real computing
work, but needs external components before it can
be used.

The CPU sends and receives data and control
signals over three sets of signal lines, known as
buses. These are the data, control and address
buses. These buses, plus a few other connections
(such as power), enter and leave microprocessor
CPUs through the short ‘legs’ that emerge from
the package. The CPU chip itself is encased in this
plastic or ceramic package and measures only
Smm (1/5th of an inch) in diameter.

= He —

Microcomputer manufacturers have for
years advertised their wares with claims that
cheap home machines may — once their
owners have familiarised themselves with
their operation — be upgraded to full
business machines. Advance Technology is
one of the first companies to fulfil that
promise with the Advance 86 micro.

The Advance 86 is sup
the 86a is a cassette-based home microcomputer
that is priced at BBC Micro level but boasts a full
128 Kbytes of RAM; while the 86b is a similar
machine augmented by twin 5; inch disk drives
and a more extensive BASIC. 86a Owners may
upgrade to the 86b by simply clipping on an
‘extension package’ containing the drives. The
result is a fast IBM-compatible business machine
at half the price of the IBM PC. 7

The 86b is manufactured in two parts — the
keyboard and the microprocessor box. The latter
is considerably larger than it needs to be,
measuring 520mm X 400mm X 95mm (21 X 16 X
4 inches), and is cased in black plastic with a hi-fi-
style smoked perspex door that allows the
keyboard to be stored inside. All sockets are
mounted in this unit, and the power transformer is
located inside it.

numeric keypad that doubles as

The keyboard is connected to the processor unit
by means of a coaxial cable and five-pin DIN
socket, above which is the on/off switch with an
LED indicator. The keyboard is certainly the best

available on any home micro and is considerably
better than those on most business machines. It
has 84 keys arranged in three groups: the main
alphanumeric keys, a set of 10 function keys, anda

a very
comprehensive set of cursor controls.

The function keys are set up to provide some of
the more commonly used functions — RUN, LIST,
SAVE, LOAD, etc. These functions may easily be
altered; each key may be allocated a string of up to
15 characters to identify the command and the
bottom line of the screen displays a six-letter label
for each one. The numeric keypad is controlled by
a toggle switch marked ‘Num Lock’. In normal use —
the pad acts like a calculator, but pressing Num_
Lock gives an entirely different effect — the keys
then control the cursor, allowing it to be moved
around the screen with precision and speed.

Inside the microprocessor box is a relatively
small circuit board containing the Intel 8086 16-
bit microprocessor (compatible with, but faster
than, the IBM’s 8088) and 128 Kbytes of RAM.
Also fitted are sockets that allow the RAM to be
doubled, although memory available to BAsic is
limited to 62 Kbytes. This is hardly a drawback, as

THE HOME COMPUTER ADVANCED COURSE 349

Advance 86a Gs
The Advance 86 is sold in two ~
versions — the £399 Advance
86a, pictured here, which is
marketed.as a home computer,
and the £1,499 Advance 86b,
an IBM-compatible business
micro

this amount is more than enough for most
applications.

The Advance is well supplied with sockets and
interfaces. These include a ‘mains out’ socket that
allows a television or monitor to be run from the
computer’s power supply; a socket enabling a
television to be used as a display; “comp sync’ and
RGB outlets for either composite video or RGB
(red, green, blue) monitors; a standard Centronics
interface for connection of a parallel printer; two
joystick ports; and a five-pin DIN socket for tape
recorder use. If the upgrade is fitted, an RS232
socket is available for connection of a serial printer
or modem. All interfaces take IBM-style leads.

In text mode, the Advance displays either 25
lines of 40 characters or an IBM-like 80 X 25
screen; the latter is barely readable unless a
monitor is used. The bottom line of the screen
normally displays function key labels, but these
may be turned off and the full screen made
available. In this mode, 16 colours (either steady
or flashing) can be used. The medium resolution
screen supports four colours, with a graphics
display of 320 X 200 pixels or text in 40 X 25
format. The high resolution mode gives a black
and white display of 640 X 200 pixels or 80 X 25
text. Seven full 40 X 25 screens may be stored in
RAM and recalled instantly — very handy for
menus, help pages, etc. In 80-column mode, four
screens may be stored and recalled. Despite the
large number of available colours, there are some
annoying restrictions placed on their use. In text
mode the background is limited to one of eight

colours, although foreground and border may use
any of the full set. When using the medium
resolution mode, things become a little more
complicated. Although four colours may be
displayed, these may not be chosen fromi the full
range; instead one of two set groups (or palettes’)
must be selected.

Graphics commands on the 86a are limited to
PSET (which sets the colour of an individual screen
pixel) and LINE (a fast line-drawing command that
also gives boxes). More useful commands like
CIRCLE, PAINT (for filling any on-screen shape with
colour), DRAW (which allows any shape to be
defined and drawn) and GET and PUT (enabling

350 THE HOME COMPUTER ADVANCED COURSE

areas of the graphics screen to be copied into
arrays, then returned to the display in different
colours or sizes) are supplied only on the 86b’s
Disk Basic. This is a pity, as the one thing a home
computer owner is likely to require is a full set of
graphics commands. The Advance character set
includes the normal ASCII range, together with
mathematical symbols and block graphics
featuring playing card suits, music notes, Greek
letters and even one of those hideous smiling faces
that you often see on badges and stickers. User-
defined characters may also be created.

The rest of the Advance Basic is almost beyond
reproach. Although lacking
‘structured’ facilities of BBC BAsic, it is fast and
very easy to use. Useful features include automatic
line numbering and renumbering, PRINT USING,
which allows easy formatting of screen displays,
and the SWAP command that allows the values of
two variables to be exchanged. Sound facilities are
good, if not startling, but again the Disk BAsic is
required for the full set of commands. Cassette
operation is straightforward — BAsic and machine
code programs are loaded with a simple LOAD
command, and programs will run automatically
after loading if the letter ‘R’ is appended to the
instruction. si

One of the most impressive features of the
Advance is the excellent screen editor. By using
the Num Lock key to set up the numeric keypad as
cursor controls, the user may move the cursor

freely about the screen, making ¢ corrections and
insertions at any point.

Allin all, the Advance does seem to live up toits
promise of providing a home computer that may
be upgraded to full business status. Undoubtedly
the facilities offered by the 86b’s more
comprehensive Disk Basic are considerably
superior to those on the cheaper machine, but the
86a can certainly bear comparison with any home
micro currently available. ‘The BAsic may not be up
to BBC standard, but the Advance’s superb
keyboard and huge memory make it a more
attractive proposition at the same price.

some of the

Centronics Printer Interface «....
tH

TB i. ia, om

RGB Output :
A high quality colour monitor «
can also be used

Composite Video Output a
This enables a monochrome OF “=...
colour monitor to be used ey

TV Modulator And Output “
To allow an ordinary TV set to
be used -

Ferranti ULA Chips *
The cost of the computer is
kept down by combining many
circuits into nine specially
designed ULA (uncommitted
logic array) chips

IBM-Style Keyboard Joystick And A To D Convertor
This socket reads in varying
voltages and converts them to
digital levels (A to D). Its most
common use is for joysticks Keyboard Socket 3

The detached keyboard plugs in
here

On/Off Switch

LANGUAGES AVAILABLE

Cassette Interface
To allow an ordinary cassette
recorder to be used to save data

Pay

Wg
Mwy

me

Upgrade Connectors
The Advance 86a upgrades to
become the IBM-compatible
86b by attaching a unit to these RAM

As well as 128K of RAM, the SO
Advance has extra ‘parity
checking’ memory. There are 8086 Microprocessor
also sockets for an extra 128K
of memory. The memory can be
increased to 256K by plugging
RAM chips into these sockets

This true 16-bit microprocessor
is more powerful than that of
the IBM PC

8087 Microprocessor Speaker
The high speed maths
processor can be added here

CHRIS STEVENS

THE HOME COMPUTER ADVANCED COURSE 351

00000000

Any We can then adie the
~ accelerating the craft by the planet’ s gravi
_. pulleand decelerating it by an :

rocket motors.
_ Acceleration due : .

ae - the mine” hake
>. _ illustration shows |

LS from 0 one ton nine ‘units sof ue i ag
: the j program me cu :

ren Lou sue Leauricheare Caine

ii vet).
a eo MEIC)

fc eneeeeuelas

PNET RT 0 ;

RINT a SLairars Larder”

BION To os REN: Pe Giit ane 6 Vee CNT ge

SINT = FRONT SS Nero Sand seats ae IML, OMS

PRN) FRG SR aieailicncs ot ates Cis emma

ERENT ;

TR RO THEN: .. GO° TG <400

IF..f* =O ~ THEN: OLB -ft=Os"FPRINT “x*#x OUT

OOF Fuen ee Ge He Bao

180 FRINT, "Key rocket burn o-9 "

190 «LET beOs IP £70 THEN. “LET- at=-INKEY®#s. LF
aBeor'" THEN LET b=VAL até

sO: CLF ab oF THEN LET bed
wh LET heh+y xt

830 LET. veveg
me LET veve Cok SOOO) /m

240 LET €=f-be LET -m=m—-b

2g FOR tei TO SOr. NEXT i

lis Te ho

400 REM On planet surface

410. “IF ove-l0 THEN: PRINT? Ykaek Sate Landing

owe Well done"’s GO TO Soo

BOL TE we a OORIER| APRON oO" KAR SR CINCH eg Sy

gu wreecked the Lander but. the crew survived!"

2 BOs FO 300

4g pee. "KOK Sora woe Lander destroyed

eee MO Survivors

440 PRINT : PRINT "You" ve just blasted a ne

4 Graker.i SUNT (-vko2. 19 e4 bin wide

JOO FIRE oe REA FT ay aqain Or ceai Ne mes eee

210 LET atQ=INFEY#s IF ag="" THEN GO TQ2310

Be TF ats ie. OR age "Y" THEN RUN

SO cares Gl mae On AND epee! Se No Ge RO NS 1 o

ap ST Sas

STYLE COUNSEL
Documenting a program involves much
more than adding comments to it or writing
user instructions. A well-documented
program has sufficient information to
indicate what it is meant to be doing, and
how it is meant to be doing it. We show how
a simple program, in BASIC and PASCAL, can
be given suitable documentation.
see SS

Consider the first version of our program (Listing
1). It is clearly a great mystery; what it does is

- anyone’s guess. Apart from saying that it ‘inputs
two numbers, multiplies them with two other
numbers, adds the two results together and prints
the answer’, there is very little evidence of the
precise task that the code performs. Now look at
the second version of the program (Listing 2). All
is revealed. Yet no comments have been added, no
program titles or REMark lines inserted and no
external documents have been produced.

It is worth taking a detailed look at the
differences between these two versions. First of all,

_ the meaningless numbers of the first listing have
been replaced by names (AYEAR and AMONTH).
Numbers whose values do not change while the
program is running are called constants. Some
languages, such as PASCAL, have a special notation
for constants (in Listing 2, the two constants are
defined separately from the variables), while other
languages, like Basic, do not. (Lines 10 and 20 of
the BASIC program use variables to define the
constants.) Giving names to constants is really

- only worthwhile if they are going to be used
frequently, otherwise comments in the program
would serve the purpose just as well.

The second crucial difference is that all the
confusing variable names have been given longer,
intelligible names. The ones that we chose here
(NYEARS to replace A, ageinsecs instead of e, and so
on) were picked because they are each less than 10
characters long, and the first two characters
distinguish them from each other. The reason for
this last requirement is explained shortly.

Generally, it is good practice to give your
variables names that are related to the role they
play in the program. For example, you could call a
loop counter LOOP (instead of the usual J or |), and
the first and last values of the counter could be put
into constants or variables with appropriate
names. Thus, a loop reading like this:

FOR J=170 10...NEXT J

could look like this:

FOR LOOP = FIRST TO TENTH... NEXT LOOP
Long variable names do, of course, take longer to
type in and use up more memory, but they do have

354 THE HOME COMPUTER ADVANCED COURSE

the advantage of making programs easier to
understand and speed up the debugging process.
If your language uses only the first two characters
of a name to distinguish between them, make sure
that the names you choose differ in the first two
characters. Thus, two long variable names (say
CODENO and COMP) may look different to the
programmer, but be indistinguishable to the

- computer.
Another major difference between the listings is

that the second uses long and meaningful prompts
for its input and adds a sensible explanation to its
output (the PRINT lines in Basic, the write lines in
PASCAL). This achieves two very important things.
The first is that it makes the program more
readable. Even if the variables were single letters,
the program would still make a lot more sense than
previously. The second, and more important,
benefit is that it makes the program accessible,
even to someone who has never seen it before.

PROGRAM LAYOUT
PascAL users will already be aware of the
advantages of laying out a program neatly on the
screen. Very simple features — like indenting lines,
leaving blank lines and using a mixture of upper
and lower case —.can turn an impenetrable mass
of symbols into a tidy and legible piece of logic.
Formatting a program for the screen or the printer
really comes into its own when your programs use
loop constructs (FOR...NEXT, WHILE...WEND,
REPEAT ... UNTIL) and especially when loops are
nested inside other loops.

Having said this, it is a lamentable fact that most
BASICS give very little option about how you lay out
the program. In this respect, the compiled
languages like PASCAL are far more flexible in that
they are usually written with a text editor (or word
processor). On the other hand, editing a BASIC
program is generally a rather crude affair (unless,
like Microsoft’s MBASIC, your interpreter will take
an ASCII version of the program and ‘tokenise’ it
to turn it into a runnable program). Worse still,
many BASICs will take the programs you write and
reformat them to remove indentation! Some, on
the other hand, will add indentation for you. The
BBC Micro is quite good at this, but you have to
remember to give it the LISTO command. Most
PASCAL systems will include a formatter and they
are generally very useful. However, for the sake of
your own clarity of thought, it is a good idea to
devise some formatting conventions, within the
limits of your language.

Comments are, of course, the main way of
documenting your programs within the programs
themselves. Again conventions vary from

ee eee re

a

language to language. Basic uses the REM
statement. The word REM must appear at the front.
of your comment and then the interpreter will |
ignore everything it finds up to the next end-of-
statement marker (: or (cr)). In other languages ©
(PASCAL, PL/1, PROLOG, etc.) comments are
bracketed by /* and */ (sometimes { and }), and
anything between the marks is ignored by the
compiler. An advantage of this system is that
comments can run over more than one line. The
disadvantage is that, if you forget the second */,
the rest of your program is taken to be a comment
and will be ignored! | |

Use comments wherever you feel some
explanation may be needed: when you are
defining constants, — initialising _ variables,
beginning a program, beginning a new procedure
(subroutine), defining a function, or writing some
code that isn’t readily understood because of its
complexity. Comments need not be long or wordy,
and often just a reminder is needed. When you are
trying to understand the logic of last year’s
adventure program, large blocks of general
comment that break up the code and do not give
enough detail can be more of a hindrance than a
help, so keep comments short and to the point. Put
them before tricky sections of code, and only put
them inside the code when their presence is not —
likely to interfere with reading the logical structure
of the program. Our final program (Listing 3)
shows some examples as guidelines. |

External documentation, in the form of
handbooks and written specifications, is the
ardest and most tedious to produce. For
rogrammers, studies have shown that written
ocumentation is usually only consulted as a last

resort. However, when it is used, it can save alot of
effort. If your program is not too long and is well
documented internally, it is unlikely that you will
ever find a need for external program
documentation. User documentation is another

matter and will be discussed later in the series.
Nonetheless, it is often useful to have some written
documentation to hand when it comes to revising
an old program or to debugging a new one. One of
the ways in which the so-called ‘fifth generation’
languages aim to improve programmer
productivity is by generating the documentation
automatically. This will be achieved by using
information from the design phase of a program’s
development. Not surprisingly, one of the best
ways to document your own programs is to use this
same trick. |

Keep a file on your programs as you write them.
Put into it all the notes you make as you design the
program, including drafts of algorithms and
flowcharts. Most importantly, keep the final
version of the flowchart you have used to write the
code from. If you have a printer, keep a listing of
the finished program. Note that, inour completed
version of the program, the first comment includes
the program name and a date. Whenever you
modify a program, change the date on it so that
you know that it is the latest version.

00000000000:
cCang0oge0000

THE HOME COMPUTER ADVANCED COURSE 355

THEN NUCLEAR FAMILY
A nuclear holocaust may hardly se seem ma
suitable subject for a computer game, and
many people may find the fantasy world of
this game objectionable. But, ethical
questions aside, Apocalypse — The Game
of Nuclear Devastation is a traditional
Diplomacy-style package that demands
tactical skill and quick reactions

Most computer games are solitary, aatieeoaal

diversions. Advertisements may depict families
‘Sitting grouped around the home computer, but
games are generally designed for the single player.

However, Apocalypse brings back the
traditional rivalry and intrigue associated with
Diplomacy and other such board games, and thus
is eminently suited to family gatherings. Indeed,
the BBC version allows up to 15 players to take
part. It is a genuine multi-player game, not simply
one in which players take turns to participate in an
essentially single-person game.

Apocalypse was originally a board game, based
on Diplomacy, which has now been extended to
take advantage of the graphics and number-
crunching capabilities of the microcomputer. The
main game covers four ‘theatres of war’ — Europe,
the Caribbean, the UK and London — while
extension kits may be purchased to include action
in South Africa, the Levant, the Arctic, the USA,
South-East Asia, the Pacific Campaign of World
War ‘Iwo, outer space, and historical campaigns
based on the Fall of the Roman Empire and

Napoleon’s battles. These options are available on
three tapes that are merged with the main game.

The screen is divided into a series of squares,
displayed as a 40 by 20 (BBC) or 20 by 20
(Spectrum) matrix. Blue squares are used to
represent sea, while various other colours depict

different geographical features — rural or urban
areas, cities, mountains or deserts. There are also
symbols to represent the opposing forces. These
graphics are dependent on machine capabilities.
The Spectrum’s simpler graphics have the benefit
of clarity: the squares are either filled in or left
empty, so it is easy to pick out territory that is
occupied by an attacking force. The BBC display,
while allowing greater graphic detail, appears
somewhat cluttered by comparison and players’
symbols tend to become lost in the background.

Players take turns to deploy their forces in a
manner appropriate to the chosen scenario.
Armies and navies are moved around the playing
area, and attacks set up and repelled, with the
computer acting as a referee. Moves are made by
selecting options from various menus, and here
the display could be improved to make things
easier. The ‘nuke’ option may be selected in the
main game, with predictably devastating results,
but this may be used only in its correct historical
context — the program won't allow you to launch
a pre-emptive nuclear strike against unfriendly
Roman legions, for example.

This is a lengthy game but, if enough like-
minded players can be found, it is well worth
investigating. Whether or not it is any better for
being played on a microcomputer is another
matter. Many people may find the board game
equally compelling.

356 THE HOME COMPUTER ADVANCED COURSE

| ?

a

DIRECTING
THE ACTION
Good arcade games need to be written, at
least_in part, in machine code. This is a
challenge for the beginner, so here we
present a machine code sprite routine for the
Spectrum. It can be used in two ways —
either incorporated in a BAsIC program by
those who don’t understand machine code,
or used as a piers pom - ae who do.

Snein BASIC has many Linib tions, sad these
are especially noticeable when moving graphics
are needed. Action games require the use of sprites
of various shapes and sizes; these should be
capable of smooth movement in all directions.

It is not easy to write graphics routines in
Assembly language, but the program presented
here should give you some good ideas on how to
approach the task. The program prints a
background of randomly placed asterisks, and
allows you to move a user-defined shape (our
example uses a cross) around the screen by
pressing the unshifted cursor keys. The cross
moves in smooth one-pixel steps, up, down, right
or left, and leaves the background unchanged. The
sprite-moving routine may easily be incorporated
into your BASIC programs.

To instal the program in your Spectrum, you
should first type in the BAsic program. The
machine code may then be entered, either by
typing in the Basic loader program, which reads
the code from data statements and then POKEs it
into memory, or by entering the Assembly
language source code by way of a suitable
assembler. Both BAsic and machine code may be
saved on cassette with lines 9000 and 9010 of the
BASIC program.

To understand how the program works we will
start by looking at the BAsic program. The
subroutine at line 1000 reads the definition of the
sprite from the data statements and POKEs this into
RAM where it can be used by the machine code
program. Lines 90 to 110 print the background,
and line 120 sets the starting position for the cross.
PRINT AT 10,16 makes the sasic interpreter calculate

the screen address corresponding to these
character co-ordinates, and this address is stored
in the system variable DFCC (addresses 23684 and
23685) where it can be read by the machine code
program. Line 130 calls the initialisation section of
the machine code program. Lines 140 to 180 area
loop that waits for a key to be pressed, POKEs the
key value into a memory location for the machine
code to read, and then calls the machine code to

~ move the sprite one pixel in the direction indicated
by the Key.

The. Assembly language program begins by
defining names for the memory locations used.
KEY is where the key value is stored. SPRPOS is used
to hold the memory address of the screen position
at which the sprite will appear. SPRTAB is a table in
which the program stores the definition of the
sprite and the contents of the screen locations that —
have been overwritten by the sprite. The sprite can
be moved anywhere on the screen, not merely in
jumps of whole character squares. So the eight bits
in each row of the sprite may be divided between
two bytes of screen memory, and the table uses two
bytes to store the eight bits, split in the same way as
on the screen. The memory location BITPOS is used:
to store the number of bits that the sprite data has
been moved from the start of the byte. i

The initialisation section of the program reads
the starting screen address of the sprite from DFCC,
then jumps to the section labelled SAVSCR, where it

Sprite In Motion
The BASIC demonstration
program moves the sprite
(initialised as a cross in the
DATA statements) across a
background of stars in
response to the unshifted

~ cursor keys

LIZ HEANEY

Stores the screen address in SPRPOS, loads the
value 1 into the D register, and calls the subroutine
UNDER. When D is set to 1, UNDER copies the
contents of the screen area in which the sprite will
be printed so that the background may be restored
once the sprite has moved on. The program then
calls the subroutine PRSPRT to print the sprite on
the screen.

The section of the program that handles the
sprite movement starts at the label MOVSPR. It
begins by loading 0 into the D register and calling —

Shift And Exchange
Shifting each of the sprite
bytes (represented here by

. the Xs), in the DE register to
| Shitien-) | effect left or right screen
oo. | movement may cause a bit to

> ‘wrap around’. If this
1S happens, D and E are
|z exchanged, re-uniting the
S Sprite bits

“Exchange

THE HOME (COMPUTER ADVANCED COURSE 357

KEVIN JONES

Screen Addressing
For memory-mapping purposes ©
the Spectrum’s 24-line screen
is divided into three sections of
eight screen lines; the details of
the addressing of the middle
section are shown here. Each
line of the screen is divided into
eight hi-res rows of 32 bytes,
each bit of which corresponds
to one dot pixel. Bytes are.
numbered sequentially along a
hi-res row, and from each row
in a screen line to the

corresponding row in the
screen line below: thus, the

bytes in the eight top rows of
the eight lines of one screen
section have consecutive
addresses. The next address is
that of the first byte in the
second row of the first screen
line; all the bytes in the eight
second hi-res rows in this
screen section are addressed
sequentially from this address,
and so on. The address of the
first byte in the top row of the
first screen line of one section
is one plus the address of the
last byte in the eighth row of
the eighth line of the preceding
section. The following program
for the 48K Spectrum illustrates
this by POKEing a line into each
byte of the hi-res screen in
turn:

90 LET SCRNSTART=16384
60 LET SCRNEND=22527
100 FOR B=SCRNSTART TO

SCRNEND
200 POKE B,255
300 NEXT B

the subroutine UNDER. With D set to 0, UNDER
copies the. previously saved screen contents back
to the screen from the table, wiping out the sprite
on the screen. The program then reads the sprite
position and Key value, tests the key value, calls the
routine to prepare for movement in the
appropriate direction and then jumps to SAVSCR to
save the screen contents and print the sprite on the
screen, just as before. ae j

To understand the two routines ABOVE and
BELOW that prepare for the sprite’s up and down
movement, we must first look at the odd way in
which the Spectrum matches memory addresses to
screen locations. This is explained in chapter 24 of
the Spectrum manual. If you look at the addresses
in hexadecimal you will see that for the 256

- characters in each section of the screen the low

byte of the address of each of the eight bytes that
make up each character is the same as the
character number within the block, while the high
byte of the address increases by one when we
move one line of pixels down the screen. For this
reason, the eight rows of pixels for one character
have addresses in the range $4000 to S47FF in the
top third of the screen, from $4800 to S4FFF in the
middle third of the screen, and from $5000 to
S57FF in the bottom third of the screen. (The ‘S’
sign means that numbers are in hexadecimal
notation — some assemblers require the use of a
hash (#) symbol instead.)

The subroutine BELOW expects a screen address
in the HL register pair, calculates the address of the
byte that is immediately below this position on the
screen, and leaves this new value in HL. If you look
at the screen addresses in binary you will see that
when the three low bits of H are 111 the next row of
pixels down is in a different character block.
BELOW tests for this first; if we are still in the same
character block all that needs to be done is to add 1

358 THE HOME COMPUTER ADVANCED COURSE

to H. If we are in a different character block we
have to add $20 (since there are 32 characters ona
line) to L. If the new value of L is between 0 and
S1F (the three high bits 000) this means we are ina
different screen section. The value of HL is the
current screeri address .

If we are still in the same screen block we have to
subtract 7 from H. You will find this becomes
easier to understand if you work through the code
and see what it does to the addresses shown in the
table. ABOVE is similar to BELOW, but calculates the
address of the pixel above the screen position.

The subroutines LMOVE and RMOVE shift the
pixel bit pattern in the table left and right. Again,
they are very similar, so we will just look at how
LMOVE works. The accumulator is loaded with the
bit position pointer, which is a single-byte number
in the range 0 to 7, corresponding to the
numbering of bits in a byte. 1 is then subtracted
from the accumulator value to effect the move;

this will also result in a number in the range 0 to 7
unless the original value of the bit position pointer
was 0, in which case the accumulator will hold
255. Use of the AND 7 instruction will now ensure
that the value in the accumulator remains in the 0
to 7 range. We then have a loop for the eight rows
of pixels in the sprite. For each row, we load the
two bytes of the table containing that row of pixels
into the DE register pair and perform a 16-bit rotate
left on DE. If this does not move a bit of the sprite
off the top end of D into the bottom end of Ewe can
simply store the shifted sprite pattern back into the
table and go on to the next row of pixels. If we have
moved a bit of the sprite from the top of D to the
bottom of E we need to exchange D and E before
storing them back in the table. At the end of the
routine we must also subtract 1 from HL so that the
sprite will be printed one position to the left.

The final subroutine in the program is PRSPRT,
which does the actual printing of the sprite on the
screen. ‘This consists of two nested loops, one for
the eight rows of pixels in the sprite, controlled by
the C register, and one for the two bytes the row of
pixels is split between, controlled by the B register.
The important part of the routine is the central
section that stores the bits of the sprite pattern on
the screen without disturbing those bits already on
the screen that should not be covered by the sprite.
We have the screen address in the HL register pair
and the sprite table address in the IX register.
PRSPRT takes a byte of the pixel pattern of the
sprite, and ORs it with what is already on the screen
so that we end up with the black dots from the
sprite pixel pattern superimposed on the previous
screen contents. |

_ This program is not comprehensive — in
particular the maximum size ofa sprite is limited to

. eight by eight pixels, only one sprite is allowed,
and the sprite does not carry its own colours
around with it. However, if you understand how
this program works you will be able to extend it to
include extra features. Even without modification,
it is a very useful addition to many BAsic and
machine code programs.

How To Use These Programs
1) Type in and SAVE
“Program 1” LINE 10
2) Type in and RUN |
*Program 2”: this SAVEs the
machine code from memory,
preferably on the tape after
Program 1 Rie
3) LOAD “Program 1”, which |
will auto-run

Robert Galvin, Motorola’s

Chairman

Motorola’s Headquarters,
lilinois, USA

RADIO CONTACT

Motorola is a company that is most often
associated with car radios. But, from
humble beginnings, Motorola Incorporated
has grown to its present position as one of
the world’s leading microelectronic
component manufacturers, with factories in
Europe and the United States producing
microprocessors for the 16-bit market.

3 :

Like many other successful business concerns,
Motorola began as a one-man business. The
company dates back to 1928, when Paul Galvin
founded the Galvin Manufacturing Corporation
in Chicago, where he specialised in the production
of domestic radios. During the 1930s the company
diversified, manufacturing police and car radios
under the brand name ‘Motorola’. In the 1940s the
corporation now known as Motorola
Incorporated — was one of the first electronics
firms to produce semiconductors.

Paul Galvin died in 1959, and was succeeded as
chairman by his son, Robert. During the ensuing
decade other manufacturers, notably those in
Japan, began to compete with Motorola in the
semiconductor and consumer _ electronics
markets. The world recession of the mid-1970s led
to enormous losses for the company, and
Motorola was forced to rethink its strategy. New
personnel were hired, many coming from
Motorola’s arch-rival, ‘Texas Instruments, and the
decision was taken to abandon the more
traditional electronics field — in which. the
company could no longer compete — and instead
concentrate on high technology microelectronics.

This involved the sale of some company assets

Cs
= ss AS Ss

360 THE HOME COMPUTER ADVANCED COURSE.

s

— notably the colour television business — the
investment of large sums in research and
development, and the purchase of companies in
new areas where Motorola hoped to make an
impact. This was a considerable risk, but then the
company had little choice in the matter.
The gamble seems to have paid off. During the

latter part of the 1970s Motorola lagged far behind
the leading firms in the semiconductor market, but
after heavy investment in new technology the
company can now claim to be breathing down the
neck of market leader Texas Instruments. As
Robert Galvin says: ‘Companies that used to be
competitors to Motorola aren’t around any more,
because they haven't adapted to the environment.’

Motorola has continued to have problems in
making its products available at the right time. In
the mid-1970s, when the microcomputer industry
was in its infancy, the Motorola 6800 eight-bit
microprocessor was outsold by the Mostek 6502
chip, which was adopted by Apple for its hugely
successful personal computers, and by the Intel
8085 and Zilog Z80 used on CP/M computers.
The company introduced the 6809 in 1976; this
was generally acknowledged to be the best
available eight-bit microprocessor, but the race for
the mass market had already been lost and the chip
appeared in only a few home micros such as the
Tandy Color Computer and the Dragon. |

However, the company continued to invest
heavily in research — ‘to get maximum advantage
soonest’, according to Robert Galvin — and is far
better placed in the race for the 16-bit market. The
68000 microprocessor was launched in 1979,
although it did not become widely available until
1982. This processor has been adopted for Apple’s
Lisa and Macintosh microcomputers and by
Sinclair Research for the QL. It is an extremely
powerful device containing 17 32-bit registers, a
16-bit data bus and a 24-bit address bus.

Motorola continues to develop new products
from its research centres in Phoenix, Arizona,
Geneva in Switzerland and East Kilbride,
Scotland. The East Kilbride factory produces
CMOS (Complementary Metal Oxide
Semiconductors) and MOS (Metal Oxide
Semiconductors) chips for a wide range of
applications. The company is now organised into
five groups, dealing with communications,
semiconductors, information systems, automotive
and industrial electronics and government
electronics. Despite some concern over low
profitability in some sectors, the company
reported sales of $1.26 billion in the first quarter of
1983 and seems set to maintain its strong position
in the market.

emeaepectin

A seta Orstosemsests

rd

rs

sania ris EDL pa

‘Serums potenomaeet

e "aakesctmmerenseseisies

a
l

we

[.

gE oe fe

